On mesoscopic description of interfaces in graphene

Authors

DOI:

https://doi.org/10.33910/2687-153X-2020-1-4-129-134

Keywords:

graphene, crystal lattice defects, elastic continuum, disclinations, interfaces, structural units

Abstract

The article discusses a mesoscopic approach to the description of interfaces (IFs) in graphene. The approach is based on the representation of defective carbon rings with broken six-fold symmetry in hexagonal lattice of graphene as singular defects, i.e. wedge disclinations, in an elastic continuum. The angle of the sector inserted into or removed from the hexagonal lattice that results in the formation of localized quadrate, pentagon, heptagon, and octagon carbon rings, defines the strength (charge) of disclinations. The mesoscopic approach views IF in graphene as an ensemble of disclinations distributed along a line. Elementary building blocks for IFs with periodic motives of carbon atoms are structural units (SUs) containing disclination sets with zero total disclination charge. The junction of SUs of different type is considered as a virtual disclination. The approach works well in graphene when analyzing elastic fields and stored energies of IFs of two types: grain boundaries (GBs) that induce misorientation of neighboring domains of graphene lattice, and zero misorientation interfaces (ZMIs) that do not possess such a property.

References

Avouris, P. (2010) Graphene: Electronic and photonic properties and devices. Nano Letters, 10 (11), 4285–4294. DOI: 10.1021/nl102824h (In English)

Bagri, A., Kim, S. P., Ruoff, R. S., Shenoy, V. B. (2011) Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Letters, 11 (9), 3917–3921. DOI: 10.1021/nl202118d (In English)

Balandin, A. A., Ghosh, S., Bao, W. et al. (2008) Superior thermal conductivity of single-layer graphene. Nano Letters, 8 (3), 902–907. DOI: 10.1021/nl0731872 (In English)

Bravo, S., Correa, J., Chico, L., Pacheco, M. (2019) Symmetry-protected metallic and topological phases in penta-materials. Scientific Reports, 9, article 12754. DOI: 10.1038/s41598-019-49187-w (In English)

Castro Neto, A. H., Guinea, F., Peres, N. M. R. et al. (2009) The electronic properties of graphene. Reviews of Modern Physics, 81 (1), 109–162. DOI: 10.1103/RevModPhys.81.109 (In English)

Frank, I. W., Tanenbaum, D. M., van der Zande, A. M., McEuen, P. L. (2007) Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 25 (6), 2558–2561. DOI: 10.1116/1.2789446 (In English)

Geim, A. K., Novoselov, K. S. (2009) The rise of graphene. In: P. Rodgers (ed.). Nanoscience and technology: A collection of reviews from nature journals. London: Nature Publishing Group, pp. 11–19. DOI: 10.1142/9789814287005_0002 (In English)

Gertsman, V. V., Nazarov, A. A., Romanov, A. E. et al. (1989) Disclination-structural unit model of grain boundaries. Philosophical Magazine A, 59 (5), 1113–1118. DOI: 10.1080/01418618908209841 (In English)

Harris, W. F. (1977) Disclinations. Scientific American, 237 (6), 130–145.

Kolesnikova, A. L., Orlova, T. S., Hussainova, I., Romanov, A. E. (2014) Elastic models of defects in two-dimensional crystals. Physics of the Solid State, 56 (12), 2573–2579. DOI: 10.1134/S1063783414120166 (In English)

Kolesnikova, A. L., Romanov, A. E. (1998) A disclination-based approach to describing the structure of fullerenes. Physics of the Solid State, 40 (6), 1075–1077. DOI: 10.1134/1.1130490 (In English)

Kolesnikova, А. L., Rozhkov, М. А., Hussainova, I. et al. (2017) Structure and energy of intercrystallite boundaries in graphene. Reviews on Advanced Materials Science, 52, 91–98. (In English)

Kolesnikova, A. L., Rozhkov, M. A., Romanov, A. E. (2020) On fracture of pseudo-graphenes. Mechanics of Solids, 55 (1), 69–76. DOI: 10.3103/S0025654420010124 (In English)

Lee, Ch., Wei, X., Kysar, J. W., Hong, J. (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321 (5887), 385–388. DOI: 10.1126/science.1157996 (In English)

Nazarov, A. A., Romanov, A. E., Valiev, R. Z. (1993) On the structure, stress fields and energy of nonequilibrium grain boundaries. Acta Metallurgica et Materialia, 41 (4), 1033–1040. DOI: 10.1016/0956-7151(93)90152-I (In English)

Ovid’ko, I. A. (2013) Mechanical properties of graphene. Reviews on Advanced Materials Science, 34 (1), 1–11. (In English)

Romanov, A. E., Kolesnikova, A. L., Orlova, T. S. et al. (2015) Non-equilibrium grain boundaries with excess energy in graphene. Carbon, 81, 223–231. DOI: 10.1016/j.carbon.2014.09.053 (In English)

Romanov, A. E., Rozhkov, M. A., Kolesnikova, A. L. (2018) Disclinations in polycrystalline graphene and pseudo-graphenes. Review. Letters on Materials, 8 (4), 384–400. DOI: 10.22226/2410-3535-2018-4-384-400 (In English)

Romanov, A. E., Vladimirov, V. I. (1992) Disclinations in crystalline solids. In: F. R. N. Nabarro (ed.). Dislocations in solid. Vol. 9: Dislocations and disclinations. Amsterdam: North-Holland, pp. 191–402. (In English)

Rozhkov, М. А., Kolesnikova, А. L., Orlova, Т. S. et al. (2016) Disclinated rings as structural units in MD simulation of intercrystallite boundaries in graphene. Materials Physics and Mechanics, 29 (1), 101–105. (In English)

Rozhkov, М. А., Kolesnikova, А. L., Yasnikov, I. S., Romanov, A. E. (2018) Disclination ensembles in graphene. Low Temperature Physics, 44 (9), 918–924. DOI: 10.1063/1.5052677 (In English)

Rozhkov, M. A., Kolesnikova, A. L., Hussainova, I. et al. (2018) Evolution of Dirac cone in disclinated graphene. Reviews on Advanced Materials Science, 57 (2), 137–142. DOI: 10.1515/rams-2018-0057 (In English)

Tang, Y., Mak, K. F., Shan, J. (2019) Long valley lifetime of dark excitons in single-layer WSe2. Nature Communication, 10, article 4047. DOI: 10.1038/s41467-019-12129-1 (In English)

Wang, H., Huang, C.-C., Polcar, T. (2019) Triboelectrification of two-dimensional chemical vapor deposited WS2 at nanoscale. Scientific Reports, 9, article 12570. DOI: 10.1038/s41598-019-49107-y (In English)

Zhang, J., Zhao, J. (2013) Structures and electronic properties of symmetric and nonsymmetric graphene grain boundaries. Carbon, 55 (1), 151–159. DOI: 10.1016/j.carbon.2012.12.021 (In English)

Published

24.12.2020

Issue

Section

Condensed Matter Physics