Fine energy structure of a magnetic skyrmion localized on a nonmagnetic impurity in an external magnetic field
DOI:
https://doi.org/10.33910/2687-153X-2020-1-4-165-168Keywords:
saddle point, minimum energy path, skyrmion, logic device, racetrack memoryAbstract
The Localization of a magnetic skyrmion on a nonmagnetic defect in a two-dimensional triangular lattice is investigated within the framework of the generalized Heisenberg model, which includes exchange, anisotropy, Dzyaloshinskii–Moriya interaction, and interaction with an external magnetic field. It is shown that there is a threshold magnetic field, below which there are two locally stable positions of the defect inside the skyrmion. The energy difference between the states with a different localization of defects results in a fine energy structure of skyrmions, depending on the strength of the magnetic field.
References
Bessarab, P. F., Uzdin, V. M., Jónsson, H. (2015) Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation. Computer Physics Communications, 196, 335–347. DOI: 10.1016/j.cpc.2015.07.001 (In English)
Castell-Queralt, J., González-Gómez, L., Del-Valle, N. et al. (2019) Accelerating, guiding, and compressing skyrmions by defect rails. Nanoscale, 11 (26), 12589–12594. DOI: 10.1039/C9NR02171J (In English)
Hagemeister, J., Romming, N., von Bergmann, K. et al. (2015) Stability of single skyrmionic bits. Nature Communications, 6, article 8455. DOI: 10.1038/ncomms9455 (In English)
Hanneken, C., Kubetzka, A., von Bergmann, K., Wiesendanger, R. (2016) Pinning and movement of individual nanoscale magnetic skyrmions via defects. New Journal of Physics, 18 (5), article 055009. DOI: 10.1088/1367-2630/18/5/055009 (In English)
Iwasaki, J, Mochizuki, M., Nagaosa, N. (2013) Universal current-velocity relation of skyrmion motion in chiral magnets. Nature Communications, 4, article 1463. DOI: 10.1038/ncomms2442 (In English)
Lobanov, I. S., Uzdin, V. M. (2020) The lifetime of big size topological chiral magnetic states. Estimation of the pre-exponential factor in the Arrhenius law. arXiv.org. Condensed Matter, article arXiv:2008.06754. [Online]. Available at: https://arxiv.org/pdf/2008.06754.pdf (accessed 17.09.2020). (In English)
Müller, J., Rosch, A. (2015) Capturing of a magnetic skyrmion with a hole. Physical Review B, 91 (5), article 054410. DOI: 10.1103/PhysRevB.91.054410 (In English)
Romming, N., Hanneken, C., Menzel, M. et al. (2013) Writing and deleting single magnetic skyrmions. Science, 341 (6146), 636–639. DOI: 10.1126/science.1240573 (In English)
Stosic, D., Ludermir, T. B., Milošević, M. V. (2017) Pinning of magnetic skyrmions in a monolayer Co film on Pt (111): Theoretical characterization and exemplified utilization. Physical Review B, 96 (21), article 214403. DOI: 10.1103/PhysRevB.96.214403 (In English)
Uzdin, V. M., Potkina, M. N., Lobanov, I. S., Bessarab, P. F., Jónsson, H. (2018) Energy surface and lifetime of magnetic skyrmions. Journal of Magnetism and Magnetic Materials, 459, 236–240. DOI: 10.1016/j.jmmm.2017.10.100 (In English)
Zhang, X., Zhao, G. P., Fangohr, H. et al. (2015) Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Scientific Reports, 5, article 7643. DOI: 10.1038/srep07643 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Mariia N. Potkina, Igor S. Lobanov, Valery M. Uzdin
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.