Ferroelectric polymers with improved performance
DOI:
https://doi.org/10.33910/2687-153X-2022-3-1-3-10Keywords:
ferroelectric polymers, polyvinylidene fluoride, polarization, energy conversion, energy storageAbstract
This article offers a short overview of the unique properties of PVDF-based electroactive polymers and their applications. Ferroelectric materials are widely used in modern electronics. Relaxor-ferroelectric terpolymers are multifunctional materials with high electrostrictive strain which, in turn, leads to large actuation capability. The terpolymer with clorofluoroethylene shows relaxor-ferroelectric behavior with vanishing hysteresis effect but considerably higher polarization. Therefore, such material is a potential candidate for energy-storage devices (supercapacitors).
References
Bachmann, M., Lando, J. (1981) A reexamination of the crystal structure of phase II of poly(vinylidene fluoride). Macromolecules, 14 (1), 40–46. https://doi.org/10.1021/ma50002a006 (In English)
Bar-Cohen, Y. (2010) Refreshable Braille displays using EAP actuators. In: Y. Bar-Cohen (ed.). SPIE Proceedings. Vol. 7642. Electroactive Polymer Actuators and Devices (EAPAD). Bellingham: SPIE Publ., article 764206. https://doi.org/10.1117/12.844698 (In English)
Bauer, F. (2012) Review on the properties of the ferrorelaxor polymers and some new recent developments. Applied Physics A, 107 (3), 567–573. https://doi.org/10.1007/s00339-012-6831-8 (In English)
Bauer, F., Fousson, E., Zhang, Q. M. (2006) Recent advances in highly electrostrictive P(VDF-TrFE-CFE) terpolymers. IEEE Transactions on Dielectrics and Electrical Insulation, 13 (5), 1149–1154. https://doi.org/10.1109/TDEI.2006.247843 (In English)
Bauer, F., Fousson, E., Zhang, Q. M., Lee, M. L. (2004) Ferroelectric copolymers and terpolymers for electrostrictors: Synthesis and properties. IEEE Transactions on Dielectrics and electrical insulation, 11 (2), 293–298. https://doi.org/10.1109/TDEI.2004.1285900 (In English)
Bauer, F. (2007) Brevet 05 08050, US-Patent 2007/0167590 A1, Method for the Production of Terpolymers based on VDF, TrFE and CFE, or CFTE. (In English)
Bauer, F., Fousson, E., Zhang, Q. M., Lee, M. L. (2004) Ferroelectric copolymers and terpolymers for electrostrictors: Synthesis and properties. IEEE Transactions on Dielectrics and Electrical Insulation, 20 (2), 293–297. https://doi.org/10.1109/TDEI.2004.1285900 (In English)
Bauer, S., Bauer, F. (2008) Piezoelectric polymers and their applications. In: Piezoelectricity. Springer Series in Materials Science. Vol. 114. Berlin; Heidelberg: Springer Verlag, pp. 157–177. https://doi.org/10.1007/978-3-540-68683-5_6 (In English)
Bobnar, V., Vodopivec, B., Levstik, A. (2003) Dielectric properties of relaxor-like vinylidene fluoride-trifluoroethylene-based electroactive polymers. Macromolecules, 36 (12), 4436–4442. https://doi.org/10.1021/ma034149h (In English)
Choi, S. T., Lee, J. Y., Kwon, J. O. et al. (2009) Liquid-filled varifocal lens on a chip. In: D. L. Dickensheets, H. Schenk, W. Piyawattanametha (eds.). SPIE Proceedings. Vol. 7208. MOEMS and Miniaturized Systems VIII. Bellingham: SPIE Publ., article 72080. https://doi.org/10.1117/12.811401 (In English)
Chu, B., Zhou, X., Ren, K. et al. (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science, 313 (5785), 334–336. https://doi.org/10.1126/science.1127798 (In English)
Chuc, N. H., Chuc, J., Choon, K., Lee, Y. (2008) Artificial muscle actuator based on the synthetic elastomer. International Journal of Control, Automation, and Systems, 6 (6), 894–903. (In English)
Cross, L. E. (1996) Ferroelectric ceramics: Materials and application issues. In: K. M. Nair, V. N. Shukla (eds.). Ceramic Transactions. Vol. 68. Hybrid microelectronic materials. Westerville: American Ceramic Society Publ., pp. 15–55. (In English)
Fruebing, P., Wang, F., Wegener, M. (2012) Relaxation processes and structural transitions in stretched films of polyvinylidene fluoride and its copolymer with hexafluoropropylene. Applied Physics A, 107 (3), 603–611. https://doi.org/10.1007/s00339-012-6838-1 (In English)
Furukawa, T. (1989) Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions. A Multinational Journal, 18 (3–4), 143–211. https://doi.org/10.1080/01411598908206863 (In English)
Furukawa, T. (1994) Structure and properties of ferroelectric polymers. Key Engineering Materials, 92–93, 15–30. https://doi.org/10.4028/www.scientific.net/KEM.92-93.15 (In English)
Furukawa, T. (1997) Structure and functional properties of ferroelectric polymers. Advances in Colloid and Interface Science, 71–72, 183–208. https://doi.org/10.1016/S0001-8686(97)90017-8 (In English)
Furukawa, T., Takahashi, Y., Nakajima, T. (2010) Recent advances in ferroelectric polymer thin films for memory applications. Current Applied Physics, 10 (1), e62–e67. https://doi.org/10.1016/j.cap.2009.12.015 (In English)
Huang, C., Klein, R., Xia, F. et al. (2004) Poly(vinylidene floride-trifluoroethylene) based high performance electroactive polymers. IEEE Transactions on Dielectrics and Electrical Insulation, 11 (2), 299–311. http://dx.doi.org/10.1109/TDEI.2004.1285901 (In English)
Kawai, H. (1969) The Piezoelectricity of Poly (vinylidene Fluoride). Japanese Journal of Applied Physics, 8 (7), 975–976. https://doi.org/10.1143/JJAP.8.975 (In English)
Kepler, R. G., Anderson, R. A. (1992) Ferroelectric polymers. Advances in Physics, 41 (1), 1–57. https://doi.org/10.1080/00018739200101463 (In English)
Klein, R. J., Xia, F., Zhang, Q. M. (2005) Influence of composition on relaxor ferroelectric and electromechanical properties of poly(vinylidene fluoride-trifluoroethylene- chlorofluoroethylene). Journal of Applied Physics, 97 (9), article 094105. https://doi.org/10.1063/1.1882769 (In English)
Kochervinskii, V. V. (1996) The structure and properties of block poly(vinylidene fluoride) and systems based on it. Russian Chemical Review, 65 (10), article 865913. https://doi.org/10.1070/RC1996v065n10ABEH000328 (In English)
Levard, T., Diglio, P. J., Lu, Sh-G. et al. (2012) Core-free rolled actuators for Braille displays using P(VDF–TrFE– CFE), Smart Materials Structure, 21 (1), article 012001. https://doi.org/10.1088/0964-1726/21/1/012001 (In English)
Li, Q., Wang, Q. (2016) Ferroelectric polymers and their energy-related applications. Macromolecular Chemistry and Physics, 217 (11), 1228–1244. https://doi.org/10.1002/macp.201500503 (In English)
Li, X., Qian, X-sh., Lu, S. G. et al. (2011) Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer). Applied Physics Letters, 99 (5), article 052907. https://doi.org/10.1063/1.3624533 (In English)
Li, X., Qian, X-sh., Gu, H. et al. (2012) Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Applied Physics Letters, 101 (13), article 132903. https://doi.org/10.1063/1.4756697 (In English)
Lovinger, A. J. (1983) Ferroelectric polymers. Science, 220 (4602), 1115–1121. https://doi.org/10.1126/science.220.4602.1115 (In English)
Lu, Y., Claude, J., Neese, B. et al. (2006) A modular approach to ferroelectric polymers with chemically tunable curie temperatures and dielectric constants. Journal of the American Chemical Society, 128 (25), 8120–8121. https://doi.org/10.1021/ja062306x (In English)
Mischenko, A., Zhang, Q., Scott, J. F. et al. (2006) Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 311 (5765), 1270–1271. https://doi.org/10.1126/science.1123811 (In English)
Nalwa, H. S. (1995) Ferroelectric polymers: Chemistry, physics and applications. New York: Dekker Publ., 895 p. (In English)
Neese, B., Chu, B., Lu, S. G. et al. (2008) Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 321 (5890), 821–823. https://doi.org/10.1126/science.1159655 (In English)
Park, S.-E., Shrout, T. (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics, 82 (4), article 1804. https://doi.org/10.1063/1.365983 (In English)
Park, Y. J., Jeong, H. J., Chang, J. et al. (2008) Recent development in polymer ferroelectric field effect transistor memory. Journal of Semiconductor Technology and Science, 8 (1), 51–65. https://doi.org/10.5573/JSTS.2008.8.1.051 (In English)
Pecora, A., Maiolo, L, Maita, F., Minotti, A. (2012) Flexible PVDF-TrFE pyroelectric sensor driven by polysilicon thin film transistor fabricated on ultra-thin polyimide substrate. Sensors and Actuators A: Physical, 185, 39–43. https://doi.org/10.1016/j.sna.2012.07.013 (In English)
Peng, B., Fan, H., Zhang, Q. (2013) A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Advanced Functional Materials, 23 (23), 2987–2992. https://doi.org/10.1002/adfm.201202525 (In English)
Petchsuk, A. (2003) Ferroelectric terpolymers, based on semicrystalline VDF/TRFE/chloro-containing termonomers: Synthesis, electrical properties, and functionalization reactions. Thesis in Materials Science and Engineering. Pensylvania, Pennsylvania State University, 182. (In English)
Ploss, B., Domig, A. (1994) Static and dynamic pyroelectric properties of PVDF. Ferroelectrics, 159 (1), 263–268. https://doi.org/10.1080/00150199408007583 (In English)
Rajamani, A., Grissom, M., Rahn, Ch. D, Zhang, Q. (2008) Wound roll dielectric elastomer actuators: Fabrication, analysis, and experiments. IEEE/ASME Transantions on Mechatronics, 13 (1), 117–124. https://doi.org/10.1109/ TMECH.2008.915825 (In English)
Ren, K., Liu, Sh., Lin, M. et al. (2007) A compact electroactive polymer actuator suitable for redreshable Braille display. Sensors and Actuators A: Physical, 143 (2), 335–342. https://doi.org/10.1016/j.sna.2007.10.083 (In English)
Sessler, G. M., Das-Gupta, D. K., DeReggi, A. S. et al. (1992) Piezo and pyroelectricity in electrets: Caused by charges, dipoles, or both? IEEE Transactions on Electrical Insulation, 27, 872–897. https://doi.org/10.18419/opus-4986 (In English)
Setiadi, D., Weller, H., Binnie, T. D. (1999) A pyroelectric polymer infrared sensor array with a charge amplifier readout. Sensors and Actuators A: Physical, 76 (1–3), 145–151. https://doi.org/10.1016/S0924-4247(98)00372-0 (In English)
Whatmore, R. W. (1986) Pyroelectric devices and materials. Reports on Progress in Physics, 49 (12), article 1335. https://doi.org/10.1088/0034-4885/49/12/002 (In English)
Xia, F., Cheng, Z.-Y., Xu, H. S. et al. (2002) High electromechanical responses in terpolymer of poly(vinylidene fluoridetrifluoroethylene-chlorofluoroethylene). Advanced Materials, 14 (21), 1574–1577. https://doi.org/10.1002/1521-4095(20021104)14:21%3C1574::AID-ADMA1574%3E3.0.CO;2-%23 (In English)
Yang, L., Li, X., Allahyarov, E. et al. (2013) Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer, 54 (7), 1709–1728. https://doi.org/10.1016/j.polymer.2013.01.035 (In English)
Zhang, Q. M., Huang, Ch., Xia, F., Su, J. (2004) Electric EAP. In: Y. Bar-Cohen (ed.). Electroactive polymer (EAP) Actuators as artificial muscles: Reality, potential, challenges. Bellingham: SPIE Press, 816 p. https://doi.org/10.1117/3.547465.ch4 (In English)
Zhang, Q. M., Bharti, V., Zhao, X. (1998) Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science, 280 (5372), 2101–2104. https://doi.org/10.1126/science.280.5372.2101 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Nikolay D. Shishkin, Anna A. Guliakova
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.