Сравнение потенциалов межатомного взаимодействия при моделировании упругих характеристик псевдо-графеновых кристаллов
DOI:
https://doi.org/10.33910/2687-153X-2023-4-4-149-156Ключевые слова:
молекулярная динамика, псевдографен, упругие свойства, дисклинация, дефектная структураАннотация
В настоящей работе проведено моделирование механических характеристик псевдо-графеновых кристаллов G5-7v1, G5-6-7v2, G4-8v1, G5-6-8v2, G5-6-8v4, G5-8v1, которые включают в себя плотные сетки разнознаковых клиновых дисклинаций. Для исследования рассматриваемых кристаллов использовался метод молекулярной динамики. Было представлено сравнение значений упругих характеристик графена и псевдо-графена, полученных с помощью потенциалов межатомного взаимодействия AIREBO, Tersoff и LCBOP. Продемонстрирована ограниченность применения данных потенциалов при моделировании пcевдо-графеновых кристаллов. В результате работы сделан вывод о необходимости модернизации существующих потенциалов межатомного взаимодействия для углеродных аллотропов или создания нового.
Библиографические ссылки
Abramenko, N. D., Rozhkov, M. A. (2021) Lattice design for non-carbon two-dimensional allotropic modifications. Reviews on Advanced Materials and Technologies, 3 (4), 19–23. https://doi.org/10.17586/2687-0568-2021-3-4-19-23 (In English)
Abramenko, N. D., Rozhkov, M. A., Kolesnikova, A. L., Romanov, A. E. (2020) Structure and properties of pseudographenes. Review. Reviews on Advanced Materials and Technologies, 2 (4), 9–26. https://doi.org/10.17586/2687-0568-2020-2-4-9-26 (In English)
Akhunova, A. K., Galiakhmetova, L. K., Baimova, J. A. (2022) The effects of dislocation dipoles on the failure strength of wrinkled graphene from atomistic simulation. Applied Sciences, 13 (1), article 9. https://doi.org/10.3390/app13010009 (In English)
Bagri, A., Kim, S.-P., Ruoff, R. S., Shenoy, V. B. (2011) Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Letters, 11 (9), 3917–3921. https://doi.org/10.1021/nl202118d (In English)
Baimova, J. A., Liu, B., Zhou, K. (2014). Folding and crumpling of graphene under biaxial compression. Letters on Materials, 4 (2), 96–99. https://doi.org/10.22226/2410-3535-2014-2-96-99 (In English)
Baughman, R. H., Eckhardt, H., Kertesz, M. (1987) Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. Journal of Chemical Physics, 87 (11), 6687–6699. https://doi.org/10.1063/1.453405 (In English)
Chen, S., Moore, A. L., Cai, W. et al. (2010) Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano, 5 (1), 321–328. https://doi.org/10.1021/nn102915x (In English)
Deb, J., Paul, D., Sarkar, U. (2020) Pentagraphyne: A new carbon allotrope with superior electronic and optical property. Journal of Materials Chemistry C, 8 (45), 16143–16150. https://doi.org/10.1039/d0tc04245e (In English)
Enyashin, A. N., Ivanovskii, A. L. (2011) Graphene allotropes. Physica Status Solidi (b), 248 (8), 1879–1883. https://doi.org/10.1002/pssb.201046583 (In English)
Fan, Q., Yan, L., Tripp, M. W. et al. (2021) Biphenylene network: A nonbenzenoid carbon allotrope. Science, 372 (6544), 852–856. https://doi.org/10.1126/science.abg4509 (In English)
Fthenakis, Z. G., Lathiotakis, N. N. (2015) Graphene allotropes under extreme uniaxial strain: An ab initio theoretical study. Physical Chemistry Chemical Physics, 17 (25), 16418–16427. https://doi.org/10.1039/c5cp02412a (In English)
Gong, Z., Shi, X., Li, J. et al. (2020) Theoretical prediction of low-energy stone-wales graphene with an intrinsic type-III Dirac cone. Physical Review B, 101 (15), article 155427. https://doi.org/10.1103/physrevb.101.155427 (In English)
Haastrup, S., Strange, M., Pandey, M. et al. (2018) The computational 2D materials database: High-throughput modeling and discovery of atomically thin crystals. 2D Materials, 5 (4), article 042002. http://doi.org/10.1088/2053-1583/Aacfc1 (In English)
Hansen-Dorr, A. C., Wilkens, L., Croy, A. et al. (2019) Combined molecular dynamics and phase-field modelling of crack propagation in defective graphene. Computational Materials Science, 163, 117–126. https://doi.org/10.1016/j.commatsci.2019.03.028 (In English)
Hao, F., Fang, D., Xu, Z. (2011) Mechanical and thermal transport properties of graphene with defects. Applied Physics Letters, 99 (4), article 041901. https://doi.org/10.1063/1.3615290 (In English)
Jafri, S. H. M., Carva, K., Widenkvist, E. et al. (2010) Conductivity engineering of graphene by defect formation. Journal of Physics D: Applied Physics, 43 (4), article 045404. https://doi.org/10.1088/0022-3727/43/4/045404 (In English)
Kochnev, A. S., Ovid’ko, I. A., Semenov, B. N. (2014) Tensile strength of graphene containing 5-8-5 defects. Reviews on Advanced Materials Science, 37 (1/2), 105–110. (In English)
Kolesnikova, A. L., Rozhkov, M. A., Abramenko, N. D., Romanov, A. E. (2020) On mesoscopic description of interfaces in graphene. Physics of Complex Systems, 1 (4), 129–134. https://doi.org/10.33910/2687-153X-2020-1-4-129-134 (In English)
Lebedeva, I. V., Minkin, A. S., Popov, A. M., Knizhnik, A. A. (2019) Elastic constants of graphene: Comparison of empirical potentials and DFT calculations. Physica E: Low-dimensional Systems and Nanostructures, 108, 326–338. https://doi.org/10.1016/j.physe.2018.11.025 (In English)
Lee, C., Wei, X., Kysar, J. W., Hone, J. (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321 (5887), 385–388. https://doi.org/10.1126/science.1157996 (In English)
Los, J. H., Fasolino, A. (2003) Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations of graphitization. Physical Review B, 68 (2), article 024107. https://doi.org/10.1103/physrevb.68.024107 (In English)
Maitra, U., Matte, H. S. S. R., Kumar, P., Rao, C. N. R. (2012) Strategies for the synthesis of graphene, graphene nanoribbons, nanoscrolls and related materials. CHIMIA, 66 (12), 941–948. https://doi.org/10.2533/chimia.2012.941 (In English)
Novoselov, K. S., Geim, A. K., Morozov, S. V. et al. (2004) Electric field effect in atomically thin carbon films. Science, 306 (5696), 666–669. https://doi.org/10.1126/science.1102896 (In English)
Novoselov, K. S., Geim, A. K., Morozov, S. V. et al. (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438 (7065), 197–200. https://doi.org/10.1038/nature04233 (In English)
Pereira, L. F. C., Mortazavi, B., Makaremi, M., Rabczuk, T. (2016) Anisotropic thermal conductivity and mechanical properties of phagraphene: A molecular dynamics study. RSC Advances, 6 (63), 57773–57779. https://doi.org/10.1039/c6ra05082d (In English)
Polak, E., Ribiere, G. (1969) Note sur la convergence de methodes de directions conjuguees. Revue Francaise D’informatique et de Recherche Operationnelle. Serie Rouge, 3 (16), 35–43. https://doi.org/10.1051/m2an/196903r100351 (In English)
Romanov, A. E., Kolesnikova, A. L., Orlova, T. S. et al. (2015) Non-equilibrium grain boundaries with excess energy in graphene. Carbon, 81 (1), 223–231. https://doi.org/10.1016/j.carbon.2014.09.053 (In English)
Romanov, A. E., Rozhkov, M. A., Kolesnikova, A. L. (2018) Disclinations in polycrystalline graphene and pseudographenes. Review. Letters on Materials, 8 (4), 384–400. https://doi.org/10.22226/2410-3535-2018-4-384-400 (In English)
Rozhkov, M. A., Kolesnikova, A. L., Yasnikov, I. S., Romanov, A. E. (2018) Disclination ensembles in graphene. Low Temperature Physics, 44 (9), 918–924. https://doi.org/10.1063/1.5052677 (In English)
Shirazi, A. H. N. (2019) Molecular dynamics investigation of mechanical properties of single-layer phagraphene. Frontiers of Structural and Civil Engineering, 13 (2), 495–503. https://doi.org/10.1007/s11709-018-0492-4 (In English)
Stuart, S. J., Tutein, A. B., Harrison, J. A. (2000) A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics, 112 (14), 6472–6486. https://doi.org/10.1063/1.481208 (In English)
Sun, H., Mukherjee, S., Singh, C. V. (2016) Mechanical properties of monolayer penta-graphene and phagraphene: A first-principles study. Physical Chemistry Chemical Physics, 18 (38), 26736–26742. https://doi.org/10.1039/c6cp04595b (In English)
Terrones, H., Terrones, M., Hernandez, E. et al. (2000) New metallic allotropes of planar and tubular carbon. Physical Review Letters, 84 (8), 1716–1719. https://doi.org/10.1103/physrevlett.84.1716 (In English)
Tersoff, J. (1988) Empirical interatomic potential for silicon with improved elastic properties. Physical Review B, 38 (14), 9902–9905. https://doi.org/10.1103/PhysRevB.38.9902 (In English)
Wang, Z., Zhou, X.-F., Zhang, X. et al. (2015) Phagraphene: A low-energy graphene allotrope composed of 5–6–7 carbon rings with distorted Dirac cones. Nano Letters, 15 (9), 6182–6186. https://doi.org/10.1021/acs.nanolett.5b02512 (In English)
Wei, X., Fragneaud, B., Marianetti, C. A., Kysar, J. W. (2009) Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Physical Review B, 80 (20), article 205407. http://doi.org/10.1103/PhysRevB.80.205407 (In English)
Wei, Y., Wu, J., Yin, H. et al. (2012) The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nature Materials, 11 (9), 759–763. https://doi.org/10.1038/nmat3370 (In English)
Winczewski, S., Shaheen, M. Y., Rybicki, J. (2018) Interatomic potential suitable for the modeling of penta-graphene: Molecular statics/molecular dynamics studies. Carbon, 126, 165–175. https://doi.org/10.1016/j.carbon.2017.10.002 (In English)
Xie, Q., Wang, L., Li, J. et al. (2020) General principles to high-throughput constructing two-dimensional carbon allotropes. Chinese Physics B., 29 (3), article 037306. https://doi.org/10.1088/1674-1056/ab6c4b (In English)
Zhang, S., Zhou, J., Wang, Q. et al. (2015) Penta-graphene: A new carbon allotrope. Proceedings of the National Academy of Sciences, 112 (8), 2372–2377. https://doi.org/10.1073/pnas.1416591112 (In English)
Zhuo, Z., Wu, X., Yang, J. (2020) Me-graphene: A graphene allotrope with near zero Poisson’s ratio, sizeable band gap, and high carrier mobility. Nanoscale, 12 (37), 19359–19366. https://doi.org/10.1039/d0nr03869e (In English)
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2023 Рожков Михаил Александрович, Абраменко Никита Дмитриевич, Смирнов Андрей Михайлович, Колесникова Анна Львовна, Романов Алексей Евгеньевич
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Автор предоставляет материалы на условиях публичной оферты и лицензии CC BY-NC 4.0. Эта лицензия позволяет неограниченному кругу лиц копировать и распространять материал на любом носителе и в любом формате, но с обязательным указанием авторства и только в некоммерческих целях. После публикации все статьи находятся в открытом доступе.
Авторы сохраняют авторские права на статью и могут использовать материалы опубликованной статьи при подготовке других публикаций, а также пользоваться печатными или электронными копиями статьи в научных, образовательных и иных целях. Право на номер журнала как составное произведение принадлежит издателю.