Электрофизические свойства композитных пленок на основе хитозана и одностенных углеродных нанотрубок

Авторы

  • Алмаз Маратович Камалов Санкт-Петербургский политехнический университет Петра Великого https://orcid.org/0000-0003-2044-957X
  • Вера Владимировна Кодолова-Чухонцева Санкт-Петербургский политехнический университет Петра Великого https://orcid.org/0000-0001-8314-5317
  • Елена Михайловна Иванькова Институт высокомолекулярных соединений РАН https://orcid.org/0000-0002-4823-0695
  • Маргарита Эдуардовна Борисова Санкт-Петербургский политехнический университет Петра Великого https://orcid.org/0000-0003-0761-6302
  • Владимир Евгеньевич Юдин Институт высокомолекулярных соединений РАН https://orcid.org/0000-0002-5517-4767

DOI:

https://doi.org/10.33910/2687-153X-2022-3-2-60-65

Ключевые слова:

хитозан, нанотрубки, электропроводность, диэлектрические свойства, порог перколяции

Аннотация

Разработаны и получены электропроводящие композитные пленки на основе хитозана и одностенных углеродных нанотрубок. С помощью метода сканирующей электронной микро­скопии проведено исследование структуры композиционных пленок. Показано, что введение углеродных нанотрубок приводит к упорядочению структуры хитозана. При увеличении содер­жания нанотрубок от 0 до 3% происходит рост электропроводности от 10 −11 до 10 См/м, измене­ние диэлектрической проницаемости от 5,5 до 26 на 1 кГц. Изучено влияние влаги на диэлектри­ческие свойства композитных пленок.

Библиографические ссылки

Abarrategi, A., Gutiérrez, M. C., Moreno-Vicente, C. et al. (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials, 29 (1), 94–102. https://doi.org/10.1016/j.biomaterials.2007.09.021 (In English)

Bonardd, S., Robles, E., Barandiaran, I. et al. (2018) Biocomposites with increased dielectric constant based on chitosan and nitrile-modified cellulose nanocrystals. Carbohydrate Polymers, 199, 20–30. https://doi.org/10.1016/j.carbpol.2018.06.088 (In English)

Chen, J., Chen, S., Zhao, X. et al. (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. Journal of the American Chemical Society, 130 (49), 16778–16785. https://doi.org/10.1021/ja805570f (In English)

Cheng, J., Meziani, M. J., Sun, Y. P. et al. (2011) Poly(ethylene glycol)-conjugated multi-walled carbon nanotubes as an efficient drug carrier for overcoming multidrug resistance. Toxicology and Applied Pharmacology, 250 (2), 184–193. https://doi.org/10.1016/j.taap.2010.10.012 (In English)

Dobrovolskaya, I. P., Yudin, V. E., Popryadukhin, P. V. et al. (2018) Effect of chitin nanofibrils on electrospinning of chitosan-based composite nanofibers. Carbohydrate Polymers, 194, 260–266. https://doi.org/10.1016/j.carbpol.2018.03.074 (In English)

Dresvyanina, E. N., Grebennikov, S. F., Dobrovol’skaya, I. P. et al. (2020) Effect of chitin nanofibrils on the sorption behavior of chitosan-based composite films. Polymer Science. Series A. Polymer Physics, 62 (3), 205–212. https://doi.org/10.1134/S0965545X20030050 (In English)

Guo, B., Ma, P. X. (2018) Conducting polymers for tissue engineering. Biomacromolecules, 19 (6), 1764–1782. https://doi.org/10.1021/acs.biomac.8b00276 (In English)

Huang, B. (2020) Carbon nanotubes and their polymeric composites: The applications in tissue engineering. Biomanufacturing Reviews, 5 (1), article 3. https://doi.org/10.1007/s40898-020-00009-x (In English)

Kumar, M. N. R. (2000) A review of chitin and chitosan applications. Reactive and Functional Polymers, 46 (1), 1–27. https://doi.org/10.1016/S1381-5148(00)00038-9 (In English)

Liu, Z., Wan, X., Wang, Z. L. et al. (2021) Electroactive biomaterials and systems for cell fate determination and tissue regeneration: Design and applications. Advanced Materials, 33 (32), article 2007429. https://doi.org/10.1002/adma.202007429 (In English)

Lorite, G. S., Ylä-Outinen, L., Janssen, L. et al. (2019) Carbon nanotube micropillars trigger guided growth of complex human neural stem cells networks. Nano Research, 12, 2894–2899. https://doi.org/10.1007/s12274-019-2533-2 (In English)

Lovat, V., Pantarotto, D., Lagostena, L. et al. (2005) Carbon nanotube substrates boost neuronal electrical signaling. Nano Letters, 5 (6), 1107–1110. https://doi.org/10.1021/nl050637m (In English)

Matrenichev, V. V., Popryadukhin, P. V., Kryukov, A. E. et al. (2018) Properties of film materials based on composite nanofibers from aliphatic copolyamide and carbon nanotubes for tissue engineering. Polymer Science. Series A. Polymer Physics, 60, 215–221. https://doi.org/10.1134/S0965545X18020104 (In English)

Maxwell, J. C. (1873) A treatise on electricity and magnetism. Oxford: Clarendon Press, 500 p. (In English)

Mitrofanova, I. V., Milto, I. V., Suhodolo, I. V. et al. (2014) Vozmozhnosti biomeditsinskogo primeneniya uglerodnykh nanotrubok [Opportunities of biomedical use of carbon nanotubes]. Byulleten’ sibirskoj meditsiny — Bulletin of Siberian Medicine, 13 (1), 135–144. https://doi.org/10.20538/1682-0363-2014-1-135-144 (In Russian)

Pan, B., Cui, D., Xu, P. et al. (2009) Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology, 20 (12), article 125101. https://doi.org/10.1088/0957-4484/20/12/125101 (In English)

Stewart, E., Kobayashi, N. R., Higgins, M. J. et al. (2015) Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: A biocompatible platform for translational neural tissue engineering. Tissue Engineering. Part C: Methods, 21 (4), 385–393. https://doi.org/10.1089/ten.tec.2014.0338 (In English)

Vladkova, T. G. (2010) Surface engineered polymeric biomaterials with improved biocontact properties. International Journal of Polymer Science, 2010, article 296094. https://doi.org/10.1155/2010/296094 (In English)

Xia, X., Zhong, Z., Weng, G. J. (2017) Maxwell–Wagner–Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites. Mechanics of Materials, 109, 42–50. https://doi.org/10.1016/j.mechmat.2017.03.014 (In English)

Yang, J., Choe, G., Yang, S. et al. (2016) Polypyrrole-incorporated conductive hyaluronic acid hydrogels. Biomaterials Research, 20 (1), article 31. https://doi.org/10.1186/s40824-016-0078-y (In English)

Опубликован

2022-06-30

Выпуск

Раздел

Condensed Matter Physics