Entropy and dimension of a chaotic attractor depending on the control parameter

Authors

DOI:

https://doi.org/10.33910/2687-153X-2022-3-4-176-185

Keywords:

Nonlinear dynamics, strange attractor, chaotic attractor, probability density, chaos, intermittency, rotator

Abstract

The dependence of the entropy and dimension of the chaotic attractor on the control parameter is investigated by the numerical experiment. Calculations are carried out for one of the simplest systems described by nonlinear equations of dynamics — a rotator driven by an external periodic field. Here, regular and chaotic solutions alternate when the control parameter changes. The numerical experiment shows that the dimension of the chaotic attractor and, as a consequence, its entropy change significantly when the control parameter is in the ranges where, due to intermittency, the transition from chaotic motion to regular motion occurs.

References

Gonchenko, A. S., Gonchenko, S. V., Kazakov, A. O., Kozlov, A. D. (2017) Matematicheskaya teoriya dinamicheskogo khaosa i ee prilozheniya: Obzor. Ch. 1. Psevdogiperbolicheskie attraktory [Mathematical theory of dynamical chaos and its applications: Review. Pt. 1. Pseudohyperbolic attractors]. Izvestiya Vysshikh uchebnykh zavedenij. Prikladnaya nelinejnaya dinamika — Izvestiya VUZ. Applied Nonlinear Dynamics, 25 (2), 4–36. (In Russian)

Grinchenko, V. T., Matsipura, V. T., Snarskij, A. A. (2007) Vvedenie v nelinejnuyu dinamiku. Khaos i fractaly [Introduction to nonlinear dynamics. Chaos and fractals]. 2nd ed. Moscow: URSS Publ., 284 p. (In Russian)

Kuznetsov, S. P. (2006) Dinamicheskij khaos: kurs lektsij [Dynamic chaos: A course of lectures]. 2nd ed. Moscow: Fizmatlit Publ., 356 p. (In Russian)

Landau, L. D., Lifshitz, E. M. (1980) Course of theoretical physics series. Vol. 5. Statistical physics. Pt. 1. 3rd ed. Oxford: Butterworth–Heinemann Publ., 564 p. (In English)

Liapzev, A. V. (2019) The calculation of the probability density in phase space of a chaotic system on the example of rotator in the harmonic field. Computer Aassisted Mathematics, 1, 55–65. (In English)

Malinetsky, G. G., Potapov, A. B. (2000) Sovremennye problemy nelinejnoj dinamiki [Modern problems of nonlinear dynamics]. Moscow: URSS Publ., 336 p. (In Russian)

Sagdeev, R. Z., Usikov, D. A., Zaslavsky, G. M. (1988) Nonlinear physics: From the pendulum to turbulence and chaos. New York: Harwood Academic Publ., 675 p. (In English)

Schuster, G. H., Just, W. (2005) Deterministic chaos. An introduction. 4th ed. Weinheim: Wiley-VCH Publ., 283 p. (In English)

Stockmann, H. J. (1999) Quantum chaos: An introduction. Cambridge: Cambridge University Press, 368 p. https://doi.org/10.1017/CBO9780511524622 (In English)

Published

20.12.2022

Issue

Section

Theoretical Physics