Description of the chaotic state of a nonlinear dynamical system using a smoothed distribution function

Authors

DOI:

https://doi.org/10.33910/2687-153X-2025-6-4-196-206

Keywords:

nonlinear dynamics, chaos, distribution function, probability density, chaotic attractor, fluctuations of the distribution function, radiation spectra

Abstract

This paper considers the possibility of describing the chaotic state of dynamical systems using a distribution function. It is shown that for dissipative systems, a description employing a distribution function similar to that used in statistical physics is inadequate. This is explained by the fact that with long evolution times, the corresponding function ceases to be continuous. A definition for a smoothed distribution function, obtained through a specific averaging of the statistical distribution function, is proposed. The equation for the smoothed distribution function is derived. The results are applied to calculate the emission spectra of dynamical systems in a chaotic state.

References

Gonchenko, A. S., Gonchenko, S. V., Kazakov, A. O., Kozlov, A. D. (2017) Matematicheskaya teoriya dinamicheskogo khaosa i ee prilozheniya: Obzor. Chast’ 1. Psevdogiperbolicheskie attraktory [Mathematical theory of dynamical chaos and its applications: Review. Part 1. Pseudohyperbolic attractors. Pseudohyperbolic attractors]. Izvestiya Vysshikh uchebnykh zavedeniy. Prikladnaya nelineynaya dinamika — Izvestiya VUZ. Applied Nonlinear Dynamics, 25 (2), 4–36. https://doi.org/10.18500/0869-6632-2017-25-2-4-36 (In Russian)

Gorbacheva, A. S., Ryzhov, I. V. (2022) Analytical regularities of inversionless superradiance. Physics of Complex Systems, 3 (2), 66–74. http://dx.doi.org/10.33910/2687-153X-2022-3-2-66-74 (In English)

Grinchenko, V. T., Matsipura, V. T., Snarskij, A. A. (2007) Vvedenie v nelinejnuyu dinamiku. Khaos i fraktaly [Introduction to Nonlinear dynamics. Chaos and fractals]. 2nd ed. Moscow: URSS Publ., 283 p. (In Russian)

Kamke, E. (1967) Differentialgleichungen Losungsmethoden und Losungen [Differential equations: Solution methods and solutions.]. Vol. 2. Leipzig: Akademische Verlag, 668 p. (In German)

Kondratyev, A. S., Liaptsev, A. V. (2008) Fizika. Zadachi na komp’yutere [Physics. Tasks on the computer]. Moscow: “Fiziko-matematicheskaya literatura” Publ., 400 p. (In Russian)

Kuni, F. V. (1981) Statisticheskaya fizika i termodinamika [Statistical physics and thermodynamics]. Moscow: Nauka Publ., 352 p. (In Russian)

Kuznetsov, S. P. (2006) Dinamicheskij khaos: Kurs lektsij. Uchebnoe posobie dlya vuzov [Dynamic chaos: A course of lectures. Textbook for]. 2nd ed. Moscow: “Fiziko-matematicheskaya literatura” Publ., 356 p. (In Russian)

Liaptsev, A. V. (2010) Strannyj attraktor v prostejshej mekhanicheskoj sisteme [A strange attractor in the simplest mechanical system]. Komp’yuternye instrumenty v obrazovanii — Computer Tools in Education Journal, 6, 57–66. (In Russian).

Liaptsev, A. V. (2021) Spontaneous symmetry breaking and superposition of states in systems with dynamic chaos. Physics of Complex Systems, 2 (3), 122–131. https://www.doi.org/10.33910/2687-153X-2021-2-3-122-131

Liapzev, A. V. (2019) The calculation of the probability density in phase space of a chaotic system on the example of rotator in the harmonic field. Computer Assisted Mathematics 1, 55–65. (In English)

Lifshitz, E. M., Pitaevskii, L. P. (1981) Physical Kinetics. Vol. 10. Oxford: Butterworth-Heinemann Publ., 452 p. (In English)

Loskutov, A. Yu. (2007) Dynamical chaos: Systems of classical mechanics. Physics – Uspekhi, 50 (9), 939–964. https://doi.org/10.1070/PU2007v050n09ABEH006341 (In English)

Malinetsky, G. G., Potapov, A. B. (2000) Sovremennye problemy nelinejnoj dinamiki [Modern problems of nonlinear dynamics]. Moscow: Editorial URSS Publ., 336 p. (In Russian)

Ryzhov, I. V., Kovyneva, E. S., Devyatkov, A. M. (2024) Superradiation in a Medium Consisting of Two Ultra-Thin Layers, Considering the Influence of Homogeneous and Inhomogeneous Spectral Line Broadening. Bulletin of the Russian Academy of Sciences: Physics, 88 (6), 909–921. https://doi.org/10.1134/S1062873824706810 (In English)

Ryzhov, I. V., Malikov, R. F., Malyshev, A. V., Malyshev, V. A. (2019) Nonlinear optical response of a two-dimensional quantum-dot supercrystal: Emerging multistability, periodic and aperiodic self-oscillations, chaos, and transient chaos. Physical Review A, 100 (3), article 033820. https://doi.org/10.1103/PhysRevA.100.033820 (In English)

Ryzhov, I. V., Malyshev, V. A., Malikov, R. F., Malyshev, A. V. (2021) Quantum metasurfaces of arrays of Λ-emitters for photonic nano-devices. Journal of Optics, 23 (11), article 115102. https://doi.org/10.1088/2040-8986/ac2788 (In English)

Ryzhov, I. V., Malyshev, V. A., Malikov, R. F., Malyshev, A. V. (2021) Nonlinear optical dynamics of 2D super-crystals of quantum Λ-emitters. Journal of Physics: Conference Series, 2103 (1), article 012226. https://doi.org/10.1088/1742-6596/2103/1/012226 (In English)

Sagdeev, R. Z., Usikov, D. A, Zaslavskii, G. M. (1988) Nonlinear physics: From the pendulum to turbulence and chaos. New York: Harwood Academic Publ., 675 p. (In English)

Schuster, G. H. (1984) Deterministic chaos. An introduction. Weinheim: Physik-Verlag, 304 p. (In English)

Published

24.12.2025

Issue

Section

Theoretical Physics