Влияние одноосного сжатия на микро- и макропараметры квантовых точек CdSe разного размера

Авторы

  • Юлия Антоновна Мельчакова Национальный исследовательский университет ИТМО; Национальный исследовательский Томский государственный университет https://orcid.org/0000-0003-4694-2995
  • Александр Иванович Соломонов Национальный исследовательский университет ИТМО https://orcid.org/0000-0003-1348-5951

DOI:

https://doi.org/10.33910/2687-153X-2025-6-2-104-109

Ключевые слова:

теория функционала плотности, частная разность во временном домене, квантовые точки, селенид кадмия, вюрцит, сфалерит, электронные свойства, фактор Парселла

Аннотация

Смоделированы CdSe квантовые точки в двух фазах: цинковая обманка и вюрцит, а также проанализированы данные DFT расчетов и расчетов фактора Парселла. Квантовые точки с размером 1.6 A оказались стабильными и были оптимизированы с помощью обменно-корреляционного функционала PBE. Поведение пограничных орбиталей (HOMO, LUMO) исследовано для нерелаксированной структуры с учетом симметрии и вырождения. Результаты определения фактора Парселла квантовых точек в фазах цинковая обманка и вюрцит размером 1,6 A показали, что они стабильны при одноосном сжатии. Разработанные квантовые точки демонстрируют механическую и оптическую стабильность, а их свойства сохраняются.

Библиографические ссылки

Alnemrat, S., Park, Y. H., Vasiliev, I. (2014) Ab initio study of ZnSe and CdTe semiconductor quantum dots. Physica E: Low-dimensional Systems and Nanostructures, 57, 96–102. https://doi.org/10.1016/j.physe.2013.10.037 (In English)

Alsalme, A., Eltawil, M. A., Alsaeedi, H. et al. (2025) Enhancing the photocatalytic efficiency of g-C3N4 by sonochemical dispersion of CdSe quantum dots for photocatalytic degradation of industrial organic pollutants under commercial light source. Materials Chemistry and Physics, 334, article 130367. https://doi.org/10.1016/j.matchemphys.2025.130367 (In English)

Askirka, V., Stsiapura, V., Miluski, P. (2025) Efficient FRET in new co-doped Tb(tmhd)3-CdSe/ZnS quantum dotspoly (methyl methacrylate) polymer nanocomposites for optoelectronic and sensor applications. Journal of Luminescence, 279, article 121047. https://doi.org/10.1016/j.jlumin.2024.121047 (In English)

Blochl, P. E. (1994) Projector augmented-wave method. Physical Review B, 50 (4), 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953 (In English)

Gong, K., Beane, G., Kelley, D. F. (2016) Strain release in metastable CdSe/CdS quantum dots. Chemical Physics, 471, 18–23. https://doi.org/10.1016/j.chemphys.2015.09.009 (In English)

Grimme, S. (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27 (15), 1787–1799. https://doi.org/10.1002/jcc.20495 (In English)

Huang, X., Li, N., Kim, K-H., Chang, Q. et al. (2024) Enhancing luminescence efficiency of CdSe quantum dots through the amine-assisted Z-type ligand. Cell Reports Physical Science, 5 (11), article 102268. https://doi.org/10.1016/j.xcrp.2024.102268 (In English)

Kohn, W., Sham, L. J. (1965) Self-consistent equations including exchange and correlation effects. Physical Review B, 140 (4A), A1133–А1138. https://doi.org/10.1103/PhysRev.140.A1133 (In English)

Kolobkova, E. V., Nikonorov, N. V., Kuznetsova, M. S., Bataev, M. N. (2024) Controlling the luminescence of CdSe quantum dots in the fluorinephosphate glass. Journal of Non-Crystalline Solids, 646, article 123248. https://doi.org/10.1016/j.jnoncrysol.2024.123248 (In English)

Kresse, G., Furthmuller, J. (1996) Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set. Physical Review B, 54 (16), 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169 (In English)

Kresse, G., Hafner, J. (1993) Ab initio molecular dynamics for liquid metals. Physical Review B, 47 (1), 558–561. https://doi.org/10.1103/PhysRevB.47.558 (In English)

Kresse, G., Hafner, J. (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49 (20), 14251–14269. https://doi.org/10.1103/PhysRevB.49.14251 (In English)

Kresse, G., Joubert, D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59 (3), 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758 (In English)

Magaryan, K. A. Mikhailov, M. A., Karimullin, K. R. et al. (2016) Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices. Journal of Luminescence, 169, 799–803. https://doi.org/10.1016/j.jlumin.2015.08.064 (In English)

Memon, R., Shaheen, I., Qureshi, A., Niazi, J. H. (2024) Enhanced detection of cardiac troponin-I using CdSe/CdS/ZnS core-shell quantum dot/TiO2 heterostructure photoelectrochemical sensor. Journal of Alloys and Compounds, 1008, article 176592. https://doi.org/10.1016/j.jallcom.2024.176592 (In English)

Perdew, J. P., Burke, K., Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865 (In English)

Pisheh, H. S., Gheshlaghi, N., Unlu, H. (2017) The effects of strain and spacer layer in CdSe/CdS/ZnS and CdSe/ZnS/CdS core/shell quantum dots. Physica E: Low-dimensional Systems and Nanostructures, 85, 334–339. https://doi.org/10.1016/j.physe.2016.07.007 (In English)

Rodriguez-Magdaleno, K. A., Perez-Alvarez, R., Ungan, F., Martinez-Orozco, J. C. (2022) Strain effect on the intraband absorption coefficient for spherical CdSe/CdS/ZnSe core–shell–shell quantum dots. Materials Science in Semiconductor Processing, 141, article 106400. https://doi.org/10.1016/j.mssp.2021.106400 (In English)

Shabaev, A., Rodina, A. V., Efros, A. L. (2012) Fine structure of the band-edge excitons and trions in CdSe/CdS core/shell nanocrystals. Physical Review B, 86 (20), article 205311. https://doi.org/10.1103/PhysRevB.86.205311 (In English)

Silva, A. C. A., Vieira de Deus, S. L., Silva, M. J. B, Dantas, N. O. (2014) Highly stable luminescence of CdSe magicsized quantum dots in HeLa cells. Sensors and Actuators B: Chemical, 191, 108–114. https://doi.org/10.1016/j.snb.2013.09.063 (In English)

Zhang, Y., Shida, L., Yanshen, Z. et al. (2024b) Promoting photoelectric performance through extraction of hot electron from Cu-doped CdSe quantum dots. Journal of Alloys and Compounds, 1005, article 176037. https://doi.org/10.1016/j.jallcom.2024.176037 (In English)

Zhang, Y., Wenchao, L., Like, L. (2024a) Optical fiber fluorescence Cu2+ sensing technology based on CdSe/ZnS quantum dots: Large detection range, low detection limit. Analytica Chimica Acta, 1331, article 343300. https://doi.org/10.1016/j.aca.2024.343300 (In English)

Опубликован

2025-06-23

Выпуск

Раздел

Physics of Semiconductors